Exam 3: Wednesday, December 18; 4:30-6:30 ; review and practice exam posted Room: MacKay 0117
Essay: Thursday's lecture

Last time: Other Planetary Systems

- Imaging of planets - difficult, but not impossible
- Detection by orbital motion ("radial velocity)
- The Kepler Mission - planets are everywhere!
- > 4000 exoplanetary systems now known
- Properties of exoplanets - are they representative?

Today: Life beyond Earth: The Drake Equation

- Parameterizing our ignorance
- breaking one big question into many small ones
- Astronomical, Biological, and Sociological factors

A Final Question: Are We Alone?

Towards an answer: The Drake Equation
(Frank Drake, 1962)

F.D. Drake, 1960
$N=R_{s} \times f_{p} \times n_{p} \times f_{L} \times f_{i} \times f_{c} \times L$ original form

A Final Question: Are We Alone?
SEARCHING FOR INTERSTELLAR COMMUNICATIONS
By GIUSEPPE COCCONe* and PHLLIP MORR SCN \dagger
Cornst Unirarike. Bhas, Noon York

\qquad
The Opetmum Chasoel

NATURE September 19, 1959 wo. 1 :e4

The reader may seek to consign these speculations wholly to the domain of science-fiction. We submit, rather, that the foregoing line of argument demonstrates that the presence of interstellar signals is fentirely consistent with all we now know, and that if signals 'are present, the means of detecting them is now at hand. The probability of success is difficult to estimate; but if we never search, the chance of success is zero.

The Drake Equation (1962) parameterizing our ignorance

$$
N=R_{s} \times f_{p} \times n_{p} \times f_{L} \times f_{i} \times f_{c} \times L
$$

\mathbf{N} is the number of communicating civilizations in the Galaxy today

Astronomical factors	$\begin{array}{\|lll} \hline= & R_{s} & \text { (annual rate of star formation) } \\ x & f_{p} & \text { (fraction of stars with planets) } \\ x & n_{p} & \text { (\# of planets with conditions for life) } \end{array}$
Biological factors	$x f_{L}$ (fraction on which life develops) $x f_{i}$ (fraction that develop intelligent life)
Sociological factors	$x f_{c}$ (fraction that develop communication) x L (\# of years communication continues)

Astronomical Factors: Sun-like Stars

$\mathbf{R}_{\mathbf{s}}$ - how many "useful" stars, out of $250,000,000,000$ in our galaxy, form each year?

- long lasting - to allow complex life to develop
- 3.5-4.0 billion years for the Earth
- quiet and steady energy production
- few big flares or other 'stellar flares'
- no binary companion
- about $1 / 3$ of all stars are "useful"

$$
R_{s} \sim 8 \text { stars / year }
$$

Astronomical Factors:
 Fraction of Stars with Planets

- star formation pictures - lots of protoplanetary disks
- searches for other planets...
- Planets are COMMON around single stars!
- future directions:
- ground--based studies
- space--based transit searches (2009-2020+)
- space--based imaging/spectroscopy (2018-?)

$$
f_{p} \sim 0.9
$$

$\mathrm{n}_{\mathrm{p}}=$ habitable planets:

 the 'Habitable Zone'- water essential to life (as we know it)
- liquid water has to exist on (or in) the planet
- must be right distance from star
- heat from star ~maintain $0^{\circ} \mathrm{C}<\mathrm{T}<100^{\circ} \mathrm{C}$
- too close - runaway greenhouse (Venus)
- too far - CO_{2} ice - no greenhouse (Mars)

BUT - life exists in extreme environments on Earth

- liquid water a constraint for "normal" life only!

Planet Size and Habitability

- Too small (< $0.5 \mathbf{M}_{\oplus}$):
- Can't hold onto a life sustaining atmosphere (Mercury, Mars)
- no tectonics - no carbon regulation
- Too big (>10 \mathbf{M}_{\odot}):
- Can hold onto the very abundant light gases (H_{2} and He)
- turns into a giant (Jupiter, Saturn) or ice giant (Uranus, Neptune)

The Habitable Zone

Amount of Starlight that Reaches the Planet (in Earth units)

Kepler Habitable Zone Planets
 As of Jene 2017

Biological Factors

- Given the proper ingredients
- energy (starlight, lightning, geothermal...)
- raw materials (carbon, hydrogen, nitrogen, oxygen)
- time (1 billion years or so)
- Will life develop? f_{L}
- Will intelligence develop? f_{i}

$\mathrm{n}_{\mathrm{p}}=$ habitable planets:

the 'Habitable Zone'

- water essential to life (as we know it)
- liquid water has to exist on (or in) the planet
- must be right distance from star
- heat from star ~ maintain $0^{\circ} \mathrm{C}<\mathrm{T}<100^{\circ} \mathrm{C}$
- too close - runaway greenhouse (Venus)
- too far - CO_{2} ice - no greenhouse (Mars)

$$
n_{p} \sim 1-2
$$

BUT - life exists in extreme environments on Earth
solar System

- liquid water a constraint for "normal" life only!

the Miller-Urey experiment (1953)

- Simulate early Earth conditions
- water, ammonia, methane, CO_{2}
- energy
- time
- results:
- amino acids
- organics
- sugars
results.

Astro 120 Fall 2019: Lecture 27 page 23
recall: Cratering rates then and "now"

- Lunar Results

- now nearly steady
- "recent" impacts
- Tycho: 100 My ago
- Copernicus: 600 My ago

The Oldest Fossils

- Cyanobacteria date back to 3.5 Billion years ago
- appear very soon after end of era of heavy bombardment
- they remain one of the most common forms of bacteria today
- responsible for generation of
 oxygen in early atmosphere

$$
f_{L} \sim 0.1 \text { to } 1 \text { ? }
$$

Late heavy bombardment

Pearce et al., Astrobiology, 18, 343 (2018)

Figure 2. Four possible scenarios for the late heavy bombardment, calibrated to crater counts Figure 2. Four possible scenarios for the late heavy bombardment, calibrated to crater count
and surface ages at the Apollo landing sites. All scenarios except the 50 Myr half-life model are supported by the available data. Reprinted by permission from Springer Nature: Zahnle et al. (2007).

Life's Early Start on Earth

- earliest fossils in excess of 3.5 billion years old
- stromatolites - 1st 'macroscopic' form (bacteria colonies)

a view of life on Earth ca. 2,000,000,000 B.C.E

Sociological Factors

- $f_{c}=1 / 2$?
- at least 1, maybe 3 intelligent species on Earth
- 1 with technology for remote communication
- L>80 years
- "Longevity" - how long are they detectable?
- leakage of VHF/UHF signals into space
- we have been detectable for almost 80 years

1966

2019

500 million years ago.

- the Cambrian 'explosion'
- increasing complexity and explosion of diversity
- leading to...

Putting it all Together:

$$
\begin{gathered}
\mathrm{N} \approx 8 \times 0.9 \times 1 \times 0.5 \times 0.5 \times 0.5 \times \mathrm{L} \\
\mathrm{~N} \sim \mathrm{~L}
\end{gathered}
$$

The number of other technical civilizations in our galaxy equals the number of years that they are able (and willing) communicate

Could be $\sim \mathbf{8 0}$ in our galaxy right now!

