Last time: Formation of Planetary Systems

- Observational Clues: from our current Solar System \& the stars
- Collapse of interstellar cloud
- collapse, fragmentation, spinup and disk formation
- The Solar Nebula (the SS 4.6 Gyr ago)
- Planet formation
- differential condensation \& the frost line
- accretion - growth of planetessimals

Today: Other Planetary Systems

- Imaging of planets - difficult, but not impossible
- Detection by orbital motion ("radial velocity)
- The Kepler Mission - planets are everywhere!
- > 3000 exoplanetary systems now known
- Properties of exoplanets - are they representative?

Wobbles of stars from reflex motion:

- Kepler's 3rd Law

- The "See-Saw" Law

- $M_{\text {planet }} \ll M_{\text {star }}$
- star moves in a small orbit
- measure dstar and you know Mplanet

Searching for other planetary systems

this is a hard problem!

- Jupiter and the Sun
- the Sun has a luminosity of $4 \times 10^{33} \mathrm{erg} / \mathrm{s}$
- Jupiter emits at most $8 \times 10^{24} \mathrm{erg} / \mathrm{s}$
- the Sun emits 500,000,000 times more light than Jupiter
- viewed from 10 pc , they are separated by 5 arc sec
- equivalent to
- 1 candle,
- 10 feet away from a stadium light bank,
- viewed from 80 miles away!

The "Radial Velocity" technique:

look for orbital VELOCITY of star around CM
Orbital motion:

$$
V=\frac{2 \pi d}{P}
$$

so
$V_{\text {star }}=30 \mathrm{~m} / \mathrm{s} \times \frac{2 \pi}{\sqrt{M_{\text {star }}}} \times \frac{1}{\sqrt{\mathrm{~d}}} \times \frac{M_{\text {planet }}}{M_{\text {Jupiter }}}$

- Biggest effect if viewed EDGE ON
- Tilt of orbit to line-of-sight reduces observed velocity

Reflex Orbital Motion

- via reflex orbital motion: precision spectroscopy

- as of today: 786 planets in 581 systems

Jupiter as an example:

- $V_{\text {Sun }}$ around $C M$ of Solar System $=13 \mathrm{~m} / \mathrm{s}$ ($=30 \mathrm{mph}$)
- Doppler effect of $13 \mathrm{~m} / \mathrm{s}$ is 1 part in 23,000,000 (!)
- varies cyclically over a 12 year cycle
- very difficult (but not impossible) to measure
- need stable spectroscope over long time
- Earth? $9 \mathrm{~cm} / \mathrm{s}$!

Improved chances for detection ($\mathrm{V}_{\text {star }}$ bigger):
if planet is massive
$\mathrm{V}_{\text {star }}=30 \mathrm{~m} / \mathrm{s} \times \frac{2 \pi}{\sqrt{M_{\text {star }}} \times \frac{1}{\sqrt{d}} \times \frac{M_{\text {planet }}}{M_{\text {Jupiter }}}}$
also - shorter period = faster detection

- pre-1995 - The Search is On
- initial search for 'ordinary planets'
- $P_{\text {orb }} \sim$ months
- 1995 -first discovery - 51 Peg (Mayor \& Queloz)

O Johan Jarnestad/The Royal Swedish Academy of Science

The Nobel Prize in Physics 2019

The Nobel Prize in Physics 2019 was awarded "for contributions to our understanding of the evolution of the universe and Earth's place in the cosmos with one half to James Peebles "for theoretical discoveries in physical cosmology", the other half jointly to Michel Mayor and Didier Queloz "for the discovery of an exoplanet orbiting a solar-type star."

Discovery Paper

A Jupiter-mass companion to a solar-type star

Michel Mayor \& Didier Queloz

Geneva Observator, 51 Chemin des Mailetites, CH 1290 Sawerny, Switrerland
The presence of a Jupiter-mass companion to the star 51 Pegasi is inferred from observations of periodic variations in the star's radial velocity. The companion lies only about eight million kilometres from the star, which would be well inside the orbit of Mercury in our Solar System. This object might be a gas-giant planet that has migrated to this location through orbital evolution, or from the radiative stripping of a brown dwarf.

For more than ten years, several groups have been examining
the radial velocities of do orbital motions induced by the presence of heavy planetar companions ${ }^{15}$. The precision of spectrographs optimized for
Doppler studies and currently in use is limited to abo $15 \mathrm{~m} \mathrm{~s}^{-1}$. As the reflex motion of the Sun due to Jupiter is $13 \mathrm{~m} \mathrm{~s}^{-1}$, all current searches are limited to the detection of Doppler surveys have failed to detect any jovian planets or
brown dwars. brown dwarfs.
Since April 1994 we have monitored the radial velocity of 142
G and K dwarf stars with our survey are selected for their a pparent constant radial velocity (at lower precision) from a larger sample of stars monitored for
15 years
. After 18 months of measurements, a small number of stars show significant velocity variations. Although most candidates require additional measurements, we report here the dis-
covery of a companion with a minimum mass of 0.5 M , orbiting covery of a companion with a minimum mass 0 of 0.5 M , orbiting
at 0.05 AU around the solar-type star 51 Peg. Constraints originating from the observed rotational velocity of 51 Peg and from
its low chromospheric emission give an upper limit of 2 r , NATURE . Vol 378 - 3 NOVEMBER un the mass of the companion. Alternative explanations to the
observed radial velocity variation (pulsation or spot rotation) observed ract
are unlikely.
The very small distance between the companion and 51 Peg
is certainly not predicted by current models of giant planet formation. As the tempecrature of the companion i planet 1,, 300 K , this object seemp to be dangerously close to the Jeans thermal evaporation limit. Moreover, non-thermal evaporation
effects are known to be dominanti effects are known to be dominanti${ }^{\circ}$ over thermal ones. This jov-ian-mass companion may therefore be the result of the stripping
of a very-low-mass brown dwarf. of a very-low-mass brown dwarf.
The short-period orbital motion
period perturnation, which may be the signature of a second low-mass companion orbiting at larger distance.
Discovery of Jupiter-mass companion(s)
Our measurements are made with the new fibre-fed echelle spec-
trograph ELODIE of the Hautc-Provence Observatory Francect
velocity . This instrument permits measurements of radial velocity with an accuracy of about 13 ms of stars up to 9 mag
in an exposure time of <30 min. The radial velocity is computed in an exposure time of $<30 \mathrm{~min}$. The radial velocity is computed

- 1995 Nature Publishing Group

Discovery Paper

LETTERS TO NATURE

The search for extrasolar planets can be amazingly rich in surprises. From a complete planetary system detected around a pulsar ${ }^{24,25}$, to the rather unexpected orbital parameters o 1 Peg b, searches begin to reveal the extraordinary diversity of possible planetary formation sites.
at a meeting held in Florence, independent confirmations of
the 4.2 -day period radial-velocity variation were obtained mid-October by a team at Lick Observatory, as well as by joint team from the High Altitude Observatory and th grateful to G. Marcy, P. Butler, R. Noyes, T. Kennelly and T. Brown for having immediately communicated their results to us.

1995-2019 Huge strides

- now over 640 confirmed extrasolar planetary systems (860 planets) found via Radial Velocities
- Most are massive planets
- Most have small orbits
- Many are multiple-planet systems

V391 Pegasi

- planetary system that has survived first death of the parent star
- discovered by pulsation phase drift in the remnant stellar core
- work done (in part) at lowa State
- Roberto Silvotti (Naples) and a bunch of us!

Planet 'Migration'

- Jupiter-mass planets can't form so close to parent stars.
- Can form farther out
- migrate inwards by losing angular momentum to gas within disk

extrasolar planet detection via precision photometry

The first transiting extrasolar planet: HD209458

Discovery by Charbonneau et al. 1999

Hubble Space Telescope light curve

Earth-trailing Heliocentric Orbit

- Launched 6 March 2009
- 0.95m Schmidt telescope: FOV $>100 \mathrm{deg}^{2}$ with an array of 42 CCD
- Optimized for finding habitable planets (0.5 to $10 M_{\oplus}$) in the HZ (near I AU) of solar-like stars
- Continuously and simultaneously monitor I 50,000 main-sequence stars
- Heliocentric orbit for continuous viewing 4 year duration

Exoplanet Populations

Non-Kepler and Kepler Discoveries

- Radial Velocity
- Transit

Imaging Microlensing

- Pulsar Timing
- Kepler

Courtney Dressing, UC Berkeley

Estimated Occurrence Rate of Planetary Candidates

Small Planets Come in Two Sizes

Kepler 11 - a 6 planet system

Kepler 16b

Astro 120 Fall 2019: Lecture 26 page 35
Kepler 34AB \& Kepler 34 b Drew Thomas (ISU sophomore research student)

What is next?

- TESS (MIT/GSFC lead)
- 500,000 "bright" stars, over entire sky
- strong asteroseismology component
- launched April 2018, began science July 2018

- European Space Agency: PLATO
- multiple-telescope orbital platform
- 9 x area of Kepler
- 100,000 stars with capacity for 1,000,000

- approved in February 2014; launch in 2024
- Beyond 2024-?

TESS - April 2018 launch

G. Ricker et al., SPIE J. Astron. Telesc. Instrum. Syst. 1(1), 014003 (2014)

TESS sky coverage

TESS - April 2018 launch

