Astro 120 Fall 2019: Lecture 25 page

Reading: Chap. 21, Sect.21.1, 21.3-21.6 Final Exam: Wednesday, December 18; 4:30-6:30PM - Room: MacKay 0117 Homework 10: Due in recitation Dec. 6 / 9

Last time: Our Sun

- The SUN:
 - statistics
 - photosphere, chromosphere, corona
 - the solar magnetic cycle
- Source of the Sun's energy:
- Hvdrogen Fusion energy source for 10 billion years

Today: Formation of Planetary Systems

- Observational Clues: from our current Solar System & the stars
- Collapse of interstellar cloud
 - collapse, fragmentation, spinup and disk formation
- The Solar Nebula (the SS 4.6 Gyr ago)
- Planet formation
 - differential condensation & the frost line
 - accretion growth of planetessimals

Formation of Planetary Systems 3

- Where to begin?
 - Evidence from our current Solar System
 - Evidence from the Stars
- First phases: collapse to star plus disk
 - interstellar cloud gravity takes over
 - angular momentum disk formation
- The Solar Nebula
 - mass and composition
 - temperature distribution
- Planet formation
 - condensation
 - accretion into planetessimals
 - accretion into planets and satellites

The Solar Nebula Theory

The planets formed in a dust-filled disk of gas surrounding the very young Sun

Astro 120 Fall 2019: Lecture 25 page

Where to begin?

- Evidence from our current Solar System
 - all planetary orbits are
 - counterclockwise
 - nearly circular
 - in the same plane out of a disk
 - inner planets are rocky
 - outer planets are gas balls

Evidence from the Stars

- there are many other solar systems
- there are many multiple star systems
- youngest stars are embedded in dust and gas

Planets formed

NGC 3603 HST • WFPC PRC99-20 • STScl OPO • June 1, 1999 Wolfgang Brandner (JPL/IPAC), Eva K. Grebel (Univ. Washington), You-Hua Chu (Univ. Illinois, Urbana-Champaign) and NASA

First phase: collapse of interstellar cloud

- Molecular Clouds: clumps of interstellar medium
 - mass: up to 10⁶ Msun
 - radius ~ 10 30 pc
- To make stars, a cloud must undergo Gravitational Collapse
- Collapse -> Spin-up -> formation of **Disk**
 - HST observations of Orion disks
 - HST observations of "Eggs" in M16
 - β Pictoris

HST · WFPC2 Orion Nebula Mosaic PRC95-45a · ST Scl OPO · November 20, 1995 C. R. O'Dell and S. K. Wong (Rice University), NASA

HST · WFPC2

Gaseous Pillars · M16 PRC95-44a · ST Scl OPO · November 2, 1995 J. Hester and P. Scowen (AZ State Univ.), NASA

HST · WFPC2

NGC7822 with WISE

The Solar Nebula (the SS 4.6 Gyr ago)"

- Composition same as the Sun
 - 74% Hydrogen
 - 24 % Helium
 - 2% "heavies" (C, O, Si, Fe)
- Mass:
 - need enough heavies for Earth, cores of Jovians
 - total mass ~ 0.1 x M_{sun}
- Temperature
 - hot in inner parts (2000K)
 - cooler with distance out (700K at Earth...)
- Size
 - 1 a.u. thick
 - extent well beyond Pluto's current orbit

Planet Formation - Condensation Astro 120 Fall 2019: Lecture 25 page 12

<u>Condensation</u>

- 2000K is hot enough to melt all "heavies"
- nebula cools, compounds "freeze out"
- inner nebula
 - heavies condense into microscopic grains
 - iron, silicates (minerals and rocks)
 - but "ices" still gaseous
- outer nebula outside the FROST LINE
 - ices condense into grains

Planet Formation - Accretion

- <u>Accretion</u>
 - grains collide and stick -> planetessimals
 - planetesimals grow by further collisions
 - gravity holds them together when big enough
 - some planetesimals eventually become very large
 - final sweeping up into present planets

All this took a VERY SHORT time

··· less than 100 million years after initial collapse

Planet Formation - Condensation

- <u>Condensation sequence</u>
 - 2000K is hot enough to melt all "heavies"
 - nebula cools, compounds "freeze out"
 - inner nebula
 - · heavies condense into microscopic grains
 - iron, silicates (minerals and rocks)
 - but "ices" still gaseous

• outer nebula - outside the FROST LINE

· ices condense into grains

P SVEM IIII	isk I	ş	Outer disk	U I Protoplanetary disk
Temperature decre	ases with distan	ce from the prote	ostar	
100				Refractory materials
				Water ice
				Highly volatile materials

Astro 120 Fall 2019: Lecture 25 page 16

Final Formation Stages

- Sun "Turns On"
 - solar wind blows remaining gas away
 - planet growth largely ceases

• End of Planetary Formation Phase

- final large-scale collisions
 - Earth–Moon system
 - Mercury core formation
- internal melting, differentiation
- satellite formation/capture
- large-scale sweeping/bombardment

All this took a VERY SHORT time

··· less than 100 million years after initial collapse

Observations - explained by the solar nebula theory

- Orderly motions of planets
 - arise naturally for objects formed within a spinning, flattened disk
- Two types of planets
 - within frost line most abundant stuff is gaseous form only small, rocky planets
 - *beyond frost line* ices more readily accrete more stuff to make big planets
- Oddball exceptions
 - final accretion stages collisions, migration, and other 'accidents'

<section-header>

Cha & Takashin 2011

