Reading: Chap. 15; Sect. 15.1-15.3; skim Chap. 16; Chap. 21, Sect. 21.1, 21.3-21.6 Exam 3 - Wednesday, Dec 18, 4:30-6:30PM No Recitations Tomorrow or Monday after break HW 10: Next assignment due in recitation Dec. 6 / 9

Last time: Astrology

- Fundamental Thesis of Astrology
- no correspondence with any known physical effect
- Sun sign test
- Double-blind study (1985)
- nagging questions, and Science vs. pseudoscience
- a prediction...

Today: Our Sun

- The SUN:
 - statistics
 - photosphere, chromosphere, corona
 - the solar magnetic cycle
- Source of the Sun's energy:
- Hydrogen Fusion
 - energy source for 10 billion years

The Vital Statistics of the Sun

Distance:	1.5×10 ⁸ km	า	Kepler's 3r
<u>Mass</u> :	2×10^{33} gra	ıms	Kepler's 3r
Radius:	7×10 ⁵ km		angular siz
Luminosity:	4×10 ³³ erg	/s	solar const
Temperature: Composition:	5800K (10,	000 ⁰ F)	Thermal Baspectrosco
	Hydrogen	73.4%	by mass
	Halium	24 8%	** **

Kepler's 3rd law Kepler's 3rd law angular size & distance solar constant & distance Thermal Balance spectroscopy

Hydrogen	73.4%	by mass
Helium	24.8%	"
Oxygen	0.8%	"
Carbon	0.4%	** **
everything else	0.6%	** **

i.e. Silver ~ 0.00000066% (still, that's 5×10^{20} tons of silver in the Sun!)

1868: Lockyer & Jansen find spectral lines in Sun never seen on Earth
 -> Helium proposed as a new element
 1891: Helium finally discovered on Earth

The 'surface' of the Sun: the **Photosphere**

- T ~ 5800K
- Granulation
 - cells of rising gases (~1000 km across)
 - give mottled appearance to photosphere
- Sunspots
 - relatively cooler than photosphere (T ~ 4500K)
 - site of strong magnetic fields

SOHO satellite image of a sunspot at and below the solar photosphere (using helioseismology)

Astro 120 Fall 2019: Lecture 24 page 7

The Chromosphere

- cooler (and hotter) layer above photosphere
- dominated by light of hydrogen emission
- Prominences
 - material suspended above photosphere
- Flares
 - giant eruptions

Astro 120 Fall 2019: Lecture 24 page 8

The Solar Corona

- rarefied outer solar atmosphere
 - visible during eclipses or from space
- strange emission lines
 - identified as highly ionized heavy elements
 - T ~ 2,000,000K

Optical image (eclipse)

Extreme UV (space)

Astro 120 Fall 2019: Lecture 24 page 12

The sun this week

S00/AA 193 2019-11-13 21:11:29 UT

The Solar Cycle

- number of spots changes over 11 year cycle
- magnetic polarity (N/S) of spots flips every 11 years
- -> whole pattern repeats every 22 years

inside the sun

20 Sep 19127 Mar 19220 Sep 19204 Nov 19300 Sep 19400 Gep 10400 Gep 104<td

Energy Source for the Sun

• Combustion?

- 1 kg of coal per square meter per second!
- whole Sun consumed in 10,000 years! . . . nope

• Gravitational Contraction?

Kelvin and Helmholtz, 1871

· falling objects acquire energy that can be converted to heat

Astro 120 Fall 2019: Lecture 24 page 16

- slow contraction can provide heat energy to keep the Sun shining
- contraction by 20 meters each year can keep the Sun shining
 - K-H contraction can provide energy for

100 million years!

Astro 120 Fall 2019: Lecture 24 page 17

cture 24 page 17

BUT

various evidence shows that the Sun has been shining for at least

4.6 billion years! Where does this energy come from?

(a hint: $E = m c^2$)

Answer: NUCLEAR FUSION

"They cheer for me because they all understand me and they cheer for you because nobody understands you."

 $4 \text{ H}^{1} \text{ --> He}^{4} \text{ + photons} \text{ + } \frac{\text{Astro 120 Fall 2019: Lecture 24 page 19}}{neutrinos}$

- mass of $H^1 = 1.0078 \text{ AM}$
- mass of $4 \times H^1 = 4.0312 \text{ AMU}$
- BUT: mass of He⁴ = 4.0026 AMU . . . 0.0286 AMU

disappears in p-p chain!

- converted into energy via E=mc²
- 0.7% of H is converted into energy
- $E = 0.007 \text{ x c}^2 \text{ ergs per gram of H-> He}$
- $E = 6 \times 10^{18}$ ergs per gram of H -> He

Hans Bethe - Nobel Prize in Physics for work published in 1939

$$How long can this go on?$$

$$How long can this g$$