Astro 120 Fall 2019, Lecture 21 page 1

Reading: Chap. 8, Sec. 8.5, Ch. 13, Sec 13.2; Sect. 13.3 – 13.4 Homework 9 - See course webpage soon ...

Exam 2 - Tuesday evening, Nov. 12, 6:45-8:00PM Practice exam, review sheets posted on WWW Essay! on website today

Brief review of last time: KBOs, Asteroids and Meteorites

- Pluto and Kuiper Belt objects
- <u>Asteroids:</u> location, sizes, and compositional families
- Meteorites: irons, stones, stony irons
- between meteorites and asteroid families
- some show no of heat processing

Today: Collisions: Past, Present and Future

- Collisions in the past
 - Cratering rates then and "now"
- Impact Energetics & Frequencies
- Recent Examples
- The K-T Impact -> Death to all Dinosaurs?
 - evidence and consequences
- The Threat Today

The 2013 Chelyabinsk Meteorite Impact February 15, 2013 - 500 kTon TNT equivalent (25x Hiroshima)

The 2013 Chelyabinsk Meteorite Impact February 15, 2013 - 500 kTon TNT equivalent (25x Hiroshima)

The 1992 Peekskill Fireball / Meteorite Fall

October 1992 - 0.1 kTon TNT equivalent

Impacts in the Inner Solar System

• Collisions have played a key role in the past

- formation of planets by accretion
- fragmentation (formation of the Moon)
- sustained planetary melting
- global surface structures
- atmospheric composition (?)

Collisions play a key role in the present

- continued modification of planetary surfaces
- meteor storms
- large and small extinction events

• Collisions will play a key role in the future

• the threat of future mass extinctions on Earth

Astro 120 Fall 2019, Lecture 21 page 7

Catastrophic impacts in past:

- formation of planets by accretion of smaller bodies (more later)
- High density of Mercury- too-large an iron core:

- Formation of the Moon the Giant Impact theory
- Huge impacts basins on Moon, Mercury
- Anomalous rotation of Venus, Uranus
- Bizarre Moons: Phobos, Miranda, Triton

Astro 120 Fall 2019, Lecture 21 page 8

Cratering rates then and "now" (ratering form frate of the second secon

Lunar impacts Now

5 tons TNT 60 foot crater March 17, 2013 15 tons TNT September 11, 2013

orbits of potentially hazardous asteroids

https://cneos.jpl.nasa.gov/fireballs/

Recent Examples:

📶 • Tunguska (Siberia) – 1908

- comet (?) impact energy = 15 Mton
- total devastation over 1000 square km
- would have been mistaken for nuclear blast today
- Meteor Crater (Arizona) 50,000 yr ago

+0.0

-0.5

Alan B. Chamberlin (JPL/Caltech)

- impact energy = **200 Mton**
- 1.3 km diameter impact crater
- environmental impact uncertain

Comet SL-9 and Jupiter - July 1994

- comet impact energy = **100,000 Mton**
- several dark markings lasting many years
- would form a 7km crater on Earth

Image at 2.34 microns with CASPIR by Peter McGregor ANU 2.3m telescope at Siding Spring

UV

Okay, but how often on Earth?

Astro 120 Fall 2019, Lecture 21 page 25

The K-T Impact -> Death to all Dinosaurs?

• Global iridium layer at K-T boundary (65 Myr ago):

- iridium is extraterrestrial
- global layer ~ 2 cm thick
- parent body size -> 13 km (taller than the atmosphere!)
- crater diameter -> 130 km
- impact energy -> ~ 10⁸ Mton

• Results of this impact:

- A global "Nuclear Winter" lasting years
- major disruption of climate
- major disruption of food chain
- large-scale extinctions (90% of all species extinct)

The Impact Hazard Scalesto 120 Fall 2019, Lecture 21 page 28

Size of body	How often? once every	Energy (Mton)	Crater size	Consequences
20 m	50 yr	5	0.2 km	 local devastation other severe local effects similar to Tunguska
100 m	1000 yr	100	1 km	 damage to ozone layer local incineration local devastation other severe local effects societal chaosif populated
1 km	100,000 yr	10,000	10 km	 suspended dust for months lower global temperature agricultural failure ocean hit? Tsunami! mass starvation comparable to S-L 9/Jupiter
10 km	10 ⁷ yr	100,000,000	100 km	 suspended dust for years total darkness for a year massive die-off of vegetation mass extinction i.e. K-T dinosaur extinction
30 km	10 ⁹ yr	3x10 ⁸	300 km	 geologically significant relax; not likely any more