Reading this week: Chap. 8, Sec. 8.3-8.4; Chapt 10, Sect. 10.3, Chap. 11 Homework 7: due this Friday / Monday

Brief review of last time: Venus & Mars

- Venus: impact craters, volcanism, tectonics?
- Mars: craters, volcanism, erosion, tectonics
 - · Hemisphere dichotomy, weathering, impacts
 - Tharsis Bulge features, volcanos and tectonics
 - evidence of liquid water in the past and present

Today: Planetary Atmospheres

- Survey of Planetary Atmospheres
- Primary Atmosphere, Secondary Atmosphere alteration •
- **Atmospheric Pressure and Temperature**
 - Pressure vs. height: Hydrostatic Equilibrium; T vs. height: thermal equilibrium
- Earth's Atmosphere •
- The Greenhouse Effect •

Planetary Atmospheres: gas, vapor, ice

Astro 120 Fall 2019: Lecture 16 page

• mostly H₂, He

• trace elements tied up in molecules CO_2 , CH_4 , N_2 , H_2O , NH_3

Hydrogen lost from inner planets very early:

av.mol.speed = 2.1 km/s ×
$$\sqrt{\frac{T}{273K} \times \frac{m_h}{m_{mol}}}$$

gas will escape if this is greater than 1/6 v esc

$$1/6 v_{\rm esc} = 1.9 \text{ km/s} \times \sqrt{\frac{M_{\rm planet}}{M_{\rm Earth}}} \times \frac{R_{\rm Earth}}{R}$$

Astro 120 Fall 2019: Lecture 16 page 2 **Overview of Planetary Atmospheres**

		Juniter	Saturn	Uranue
	Clouds	H ₂ SO ₄	H ₂ O	CO ₂ , H ₂ O
Ψ[avg. T [C]	470	15	-50
5	% O ₂	0	21	0
6 S	%N ₂	4	77	3
it I	% CO 2	96	trace	95
ਯ	Surf. Pressure	92	1	0.007
		Venus	Earth	Mars

		Jupiter	Saturn	Uranus
ans	% H	75	85	74
	% He	24	14	24
Ň	%CH4	< 0.1	< 0.1	< 1
oل ا	% NH3	< 0.1	< 0.1	< 0.1
	avg. T [C]	-150	-185	-210
	Clouds	$NH_3, H_2O, ?$	NH ₃ , NH ₄ SH	NH ₃ , CH ₄

Astro 120 Fall 2019: Lecture 16 page 4 molecular speed at a fixed temperature

Atmospheric Pressure and Temperature

- Pressure vs. height: Hydrostatic Equilibrium:
 - gas pressure upwards

balances

- gravity (weight) downwards
 - · pressure highest at surface, drops with altitude
 - · density also highest at surface, drops with altitude

0.2

0

0.8

0.6 Pressure (bars) 1.0

Atmospheric Pressure and Température *

- Pressure vs. height: Hydrostatic Equilibrium:
 - gas pressure upwards balances
 - gravity (weight) downwards
 - pressure highest at surface, drops with altitude
 - density also highest at surface, drops with altitude
- Temperature vs. height: thermal equilibrium:
 - warm if layer absorbs solar energy
 - cool if layer is transparent to solar radiation
- temperature depends on composition of atmospheric layers as well as pressure & density:
 - IR absorbers: CO₂, H₂O
 - UV absorbers: N₂, O₂, O₃

The Greenhouse Effect

The Greenhouse Effect

The Greenhouse Effect:

some gasses are transparent in visible/UV wavelengths

but are opaque (absorbers) in the Infrared

MAIN GREENHOUSE GASSES: CO2, H2O

- solar energy arrives at Earth, heats up ground
- ground radiates energy in far-IR
- far-IR trapped by Greenhouse gasses
- ground heats up more, radiates in near-IR
- greenhouse gasses allow near–IR to escape sets up a balance with incoming energy

	w/o atmosphere	with atmosphere
Mercury	160 C	160 C
Venus	40 C	470 C
Earth	0 to -15 C	15 C
Mars	-55 C	-50 C

Temperature Structures in terrestrial planets

Astro 120 Fall 2019: Lecture 16 page 13

Methane leak Astro 120 Fail 2019: Lect. Aliso Canyon (Porter Ranch) California

- Oct. 23, 2015 Feb.11, 2016
- ~100,000 tons of methane escaped
 - equivalent to CO₂ release from burning 1 billion gallons of gasoline
- Methane is transparent to visible light, so leak is "invisible"
- But methane blocks Infrared light, so IR photography reveals escaping gas

Infrared view

Temperature Structures in terrestrial planets

Astro 120 Fall 2019: Lecture 16 page 14

a year in the CO₂ life of Earth

Earth's changing greenhouse effect: CO₂ and global temperature

Changes in physical and biological systems and surface temperature 1970-2004

Global Warming and Ozone Depletion

effects of mankind on our atmosphere

- CO₂ is up 15% this past century
 - from burning fossil fuels
 - increased greenhouse effect
 - excess global warming?
 - complicating factors:
 - warmer = more clouds
 - = blocked sun
 - = less energy input
 - consequences (possible)
 - global warming
 - reduction in polar ice caps
 - raised sea level

or

- massive cloud cover
 - global cooling
 - next ice age?

Global Warming and Ozone Depletion

effects of mankind on our atmosphere

- Ozone (O₃) critical for life
 - shields land from bad UV
 - is very fragile:
 - destroyed by trace chlorofluorcarbons (CFCs)
- complicating factors;
 - complex chemistry
 - CFCs live a long time
 - seasonal effects
- consequences:
 - increased UV exposure
 - skin cancer in humans
 - mutations etc.

