Reading for next week: Chap. 9, Sect. 9.4-9.5, Chap. 10, Sect. 10.1-10.2, 10.4-10.5

Homework 5: Due in recitation Friday/Monday Oct. 11, 14

Homework 6: Available on website, due Friday/Monday, Oct. 18, 21

Public Lecture (extra LC credit): Tuesday, Oct. 15, 8:15pm - MU Great Hall:

Dr. Chris Lintott: "How to Find a Planet Without Leaving Your Couch

Last time: Planet interiors and surfaces

- Planetary interiors: hot and stratified
- Processes affecting planetary surfaces
- Impact cratering
- Volcanism and melting
- Weathering, erosion

Today: Planet surface processes, cont'd., ages

- (plate) tectonics
- Relative Ages via Crater Density
 - more craters, worn-down craters = older surface

Astro 120 Fall 2019: Lecture 13 page 3

More Mars Weathering: Wind Streaks

Astro 120 Fall 2019: Lecture 13 page

Tectonic Changes

Mercury, Venus, Earth, Mars

- Definition: large-scale changes as a planet's crust responds to stress
- Earthquakes: sliding and cracking of crust
- Mountain Building: buckling and folding of crust
- Subduction: forcing down of crust into interior

Plate Tectonics on the Earth

- partially molten asthenosphere (upper mantle)
- crustal plates "float" atop asthenosphere
- subduction zones: where plates overlap
- faults: where plates slide past

Earth's continental plates - Pacific region Figure 130 Figure 130 Page 7 Earth's Continental plates - Pacific region Figure 130 Figure 130 Page 170 Pag

the San Andreas fault

Mid-Atlantic Ridge

• Rotation matters Slow Rotation

AGES: when did the surface solidify after being molten?

Relative Ages from cratering density

Moon, Mercury, Mars, Venus, outer moons

crater density:

number of craters per unit area on a surface

Younger Surfaces:

- low crater density
- fresher looking craters

Older Surfaces:

- more time to collect impacts
- higher crater density
- · older, degraded craters
- · saturation new ones cover old

Crater density gives relative ages across a body calibrated for the Moon only via lunar sample dating

A "new" surface: Hadley Rille (3.2 billion yrs)

Absolute Ages from Radiometric Dating

- unstable isotopes
 - an unstable isotope is a form of an element with too many, or too few neutrons.
 - example: ¹²C (6p, 6n) is 'normal' while ¹⁴C (6p, 8n) has two extra neutrons, and is *unstable*
- radioactive decay
 - i.e. neutron changes to a proton+electron
 - occurs at random, but with well defined average rate
 - half life = time for 1/2 of the unstable isotopes to decay
 - intrinsic property of atomic nuclei
 - unchanged over time
 - specific for a given decay channel
- example: ${}^{40}K$ --> ${}^{40}Ar$; half life = 1.25x10 9 yr

Astro 120 Fall 2019: Lecture 13 page 20

		1 half-life	2 half-lives	3 half-lives	4 half-lives
Element	Start	1.25 Gyr	2.5 Gyr	3.75 Gyr	5.0 Gyr
Potassium 40	1000	500	250	125	62
Argon 40	0	500	750	875	938
Ratio K/Ar		1	0.33	0.14	0.067

