Reading: today: web-based reading on satellite orbits; Chap. 3 Sec. 5 Astro 120 Fall 2019 : Lecture 10 page 1 Chap. 7, Sect. 1, 2 (for next week)
Exam 1: Tuesday, October 1, 6:45-8:00. Room 5 Physics (next door) ESSAY QUESTION

Last time: more Newton

- Physical Laws and definitions of force, velocity, acceleration
- \#1: Inertia; \#2: Forces (F=ma); \#3: Action/Reaction
- Newton's Law of Universal Gravitation
- gravity as a central, universal, cosmic force

Today: Rocket Science

- orbits - circular velocity and escape velocity
- Holman Transfer orbit - adjust size and eccentricity to take a trip from one planet to the next
- flyby, orbit, and landing
- Gravitational assist

Rocket Science:

How to send a spacecraft to Mars
0- Don't shoot AT it - it is a MOVING target !!!

1. accelerate to break free from Earth's gravity
2. coast in "transfer orbit" to reach Mars' orbit
3. get captured by the gravity of Mars

Newton's Legacy

- Force of Gravity pulls planets towards Sun

- without gravity, planets would fly away in straight lines
- Newton's theory of gravity explains -simply- the orbits of the planets

Understanding motions of the planets was the principal discovery of astronomy from prehistory through 1700.

- Improved observations ("technology") demanded more precise models of the Solar System
- This precision was
- approached by complex models (epicycles, etc.) but
- achieved by discovery of the underlying simplicity: Gravity

1- accelerate to break free of Earth

- Circular velocity
= speed needed to maintain a circular orbit
$\mathrm{v}_{\mathrm{c}}^{2} \approx \frac{\text { Mass of main body }}{\text { size of orbit }}$
- for near-Earth orbit, $\mathrm{vc}=7.7 \mathrm{~km} / \mathrm{s}(=17,000 \mathrm{mph})$
- for Earth around Sun, vc= $30 \mathrm{~km} / \mathrm{s}$ (=67,000 mph)
- for near-Mars orbit, $\mathrm{Vc}=3.4 \mathrm{~km} / \mathrm{s}(=7,600 \mathrm{mph})$
- for Mars around Sun, vc= $24 \mathrm{~km} / \mathrm{s}(=54,000 \mathrm{mph})$
- Escape Velocity
$=$ speed needed to escape (forever) grav. pull
$v_{\text {esc }}=v_{C} \times \sqrt{2}$

$$
\begin{array}{|l|}
\hline \text { from near-Earth orbit, } \\
v_{\text {esc }}=11 \mathrm{~km} / \mathrm{s}(=24,000 \mathrm{mph}) \text { away from Earth }
\end{array}
$$

Exceed escape velocity - into a Sun-centered orbit!

2- coast in "transfer orbit" to Mars

- Transfer Orbit: an ellipse with:
- perihelion at Earth distance (1 a.u.)

Kepler 1:
perihelion distance $=\mathbf{a} \times(1-e)$ aphelion distance $=\mathbf{a} \times(1+e)$

- aphelion at Mars min. distance (1.38 a.u.) $e=0.160 ; a=1.19 a . u . ; P=15.6$ months
- this gets probe to Mars with minimum energy

How fast do you need to go to achieve the transfer orbit to Mars?
Kepler's Second Law tells us! 32.3 km/s w.r.t. the Sun

- Coast for P/2 (about 7+ months):

- If you left at the right time, reach Mars near aphelion
- "Launch Window" open every 25 months (or so)

3- get captured by Mars

- Rendezvous with Mars:

- spacecraft speed $=23.4 \mathrm{~km} / \mathrm{s}$ (via Kepler 2)
- Mars speed $=26.7 \mathrm{~km} / \mathrm{s}$
- relative velocity $=3.3 \mathrm{~km} / \mathrm{s}$
- circular velocity for Mars orbit is $3.4 \mathrm{~km} / \mathrm{s}$
- an orbital maneuver (burn) is needed to reach Mars orbit
- timing is critical here!

MAVEN Cruise trajectory

MAVEN arrival

3- get captured by Mars

- Rendezvous with Mars:

- spacecraft speed $=23.4 \mathrm{~km} / \mathrm{s}$ (via Kepler 2)
- Mars speed $=26.7 \mathrm{~km} / \mathrm{s}$
- relative velocity $=3.3 \mathrm{~km} / \mathrm{s}$
- circular velocity for Mars orbit is $3.4 \mathrm{~km} / \mathrm{s}$
- an orbital maneuver (burn) is needed to reach Mars orbit
- timing is critical here!

Mars Climate Observer (1999) got it wrong...
unit confusion (English vs. Metric)
came too close - burned up in atmosphere
Schematic MCO Encounter Diagram

Curiosity Rover - landing

Similar scheme to reach Venus orbit

- BUT: Decelerate from Earth
- Venus transfer orbit puts
- Earth at Aphelion
- Venus at Perihelion
- MERCURY: much tougher

Getting to the Outer Planets

- requires a lot of energy (fuel) and time
- special trick: gravity assist
- slingshot effect of planet's gravity on the spacecraft

Trajectories in "The Martian"

New Horizons to Pluto and beyond

Trajectories in "The Martian"

