Web-based article on orbits for Thursday Homework 4: Due Thursday for early grading or Mon./Fri. Exam 1: Next Tuesday, Oct. 1, see schedule on website.

Essay provided in lecture this Thursday

Last time: Kepler to Newton

- Kepler's Laws
- Empirical: based on data alone w/o physical bias
- \#1: ellipses; \#2: planets move faster when close; \#3: $\mathrm{P}^{2}=\mathrm{a}^{3}$
- Newton!
- gravity as the physical law - orbits are continual falls

Today: more Newton

- Physical Laws and definitions of force, velocity, acceleration
- \#1: Inertia; \#2: Forces (F=ma); \#3: Action/Reaction
- Newton's Law of Universal Gravitation
- gravity as a central, universal, cosmic force

1666: Isaac Newton (1643-1727)

mathematician: Invented calculus as a youth . . .

synthesized:
Galileo's Experiments
Kepler's Laws
Calculus
into Physical Laws;
the basis of Modern Science
Apple falls -> Earth and apple attract each other Moon and Earth attract each other, too
If moon moves sideways as it falls, it could forever circle the Earth...

Newton's Synthesis

- Mathematics - Calculus
- How to define/formulate/calculate motion \& acceleration
- Physics - definitions / laws
- energy of interaction between masses
- momentum - resistance to change in motion
- correspondence with mathematical definitions

- Universal Gravitation

- dependence of gravitational force on mass \& distance
- connecting Galileo's experiments \& Kepler's Laws
- successful synthesis of earthly \& cosmic behavior
- blueprint for modern physics

Newton's Laws:

Newton \#1: The Law of Inertia

A body moves at a constant velocity unless an unbalanced force acts on it

- Velocity: speed and direction
- example: 65 mph southbound
- Force: something that changes a body's velocity
- something that changes body's speed and/or direction
- an external "push" or "pull"
- Inertia: resistance to change in velocity

Newton's Laws:

Newton \#2: The Law of Force

Force = mass \mathbf{x} acceleration

- Acceleration:
- (rate of) change in velocity = (rate of) change in speed and/or direction
- examples:
- Omph to 60 mph in 12 seconds (accel.)
- 60 to 0 in 10 seconds (decel.)
- turning left at the light (change in direction)

mass vs. weight
mass $<->$ inertia
weight $<->$ force

- Inertia: a=F/m
- bigger mass: smaller accel. for same force
- inertia: resistance to acceleration by a force

Newton's Law of Universal Gravitation

Gravity is

- a central force: strength drops with distance ${ }^{2}$
- a universal force: same form everywhere
- a cosmic force: inherent property of matter

Apple falls -> Earth and apple attract each other Moon and Earth attract each other, too
If moon moves sideways as it falls, it could forever circle the Earth...

- Force of gravity pulls planets towards Sun
(Newton's 2nd law)
- without gravity, planets would fly away in straight lines (Newton's 1st law)

Newton's Laws:

Newton \#3: Law of Action and Reaction

When one body exerts a force on a second body, the second body exerts an equal force, in the opposite direction, on the first.

- Example: a rocket

Body 1 : expanding gas jet

Newton's Derivation of Kepler \#3

- Gravitational force pulling planets toward sun
$F_{\text {toward }}=\frac{G M m}{a^{2}}$ (Newton's law of Universal Gravitation)
- centrifugal "force" pulling planets away from sun

$$
\begin{aligned}
F_{\text {away }}= & \frac{m v^{2}}{a} \quad \text { or, since } \quad v=\frac{2 \pi a}{P} \\
& F_{\text {away }}=\frac{m 4 \pi^{2} a}{P^{2}}
\end{aligned}
$$

- If forces equal, then distance between doesn't change!

$$
\frac{G M m}{a^{2}}=\frac{m 4 \pi^{2} a}{P^{2}} \quad \ldots \text { or } \ldots \quad P^{2}=a^{3} \times\left(\frac{4 \pi^{2}}{G M}\right)<\text { a constant }
$$

this is Kepler's Third Law!

Newton's Legacy

- Force of Gravity pulls planets towards Sun
- without gravity, planets would fly away in straight lines
- Newton's theory of gravity explains -simply- the orbits of the planets
Understanding motions of the planets was the principal discovery of astronomy from prehistory through 1700.
- Improved observations ("technology") demanded more precise models of the Solar System
- This precision was
- approached by complex models (epicycles, etc.) but
- achieved by discovery of the underlying simplicity: Gravity

