Astro 120 Fall 2019: Lecture 8 page 1

Reading: Ch. 3, Sect. 3.2 - 3.3 Homework 3: Due Tomorrow and Mon.

Homework 4: Now available, due next recitation cycle, or next Tuesday for fast grading. Exam 1: Tuesday, Oct. 1; review materials posted

Last time: the Greeks to Copernicus, Tycho, and Galileo

- Greek Astronomy: perfect, immutable sky with Earth at the center
 - uniform circular motions epicycles

• The Renaissance

- Copernicus Sun to the center
- Tycho Brahe detailed observations
- Galileo telescope views of planets + physics experiments

Today: Kepler to Newton

- Kepler's Laws
 - simple, empirical description of planetary motion
 - abandoned all previous assumptions: not even circles!
- Newton!
 - gravity as the physical law orbits are continual falls
 - physical laws simplicity restored to celestial mechanics

towards the modern view

- 1200s: Ptolemy's method off by several *degrees*
- response: add more epicycles . . .
- 1543: Copernicus (1473-1543)
- moved sun to center ----> Revolutionary!
- 1580: Tycho Brahe (1546-1601)
 - precise positions of planets
 - stars are fixed, therefore very distant
 - sky is not immutable
 - 1609: Galileo (1564–1642)
 - astronomer: telescope studies show Copernicus right
 - physicist: experiments with Gravity

Astro 120 Fall 2019: Lecture 8 page 4

1610 - Johannes Kepler

mathematician and klutz

used Tycho's data on the motion of Mars: with no circular motion bias to discover

(1571-1630)

Kepler's Laws of Planetary Motion

These are <u>simple</u> empirical laws explaining planetary motion, <u>derived from data only</u>, with <u>no preconceptions</u>.

Astro 120 Fall 2019: Lecture 8 page 9

Kepler's Law #3

• The Law of Periods:

Period² = (semimajor axis)³
$$P^2 = a^3$$

(P in years, a in A.U.)

Bigger orbit (larger a) -> longer Period

Kepler's 3rd Law

Planet	P[y]	a[a.u.]	P ²	a ³	P ² /a ³
Mercury	0.241	0.387	0.0581	0.0580	1.0021
Venus	0.615	0.723	0.3782	0.3779	1.0008
Earth	1	1	1	1	1
Mars	1.881	1.524	3.5382	3.5396	0.9996
Jupiter	11.86	5.203	140.66	140.85	0.9986
Saturn	29.42	9.539	865.54	867.98	0.9972
Uranus	84.01	19.19	7057.7	7066.8	0.9987
Neptune	164.8	30.06	27159	27162	0.9999

1627: Kepler's Rudolphine Tables

Astro 120 Fall 2019: Lecture 8 page 11

- Final publication of Tycho's star catalog
- Planetary position tables computed with Kepler's laws
- Recipes to allow users to calculate positions on their own

DIALOGO GOLONARIO DIACON DI ALCOGO GOLONARIO DELLO STUDIO DI PISA. E Fidofo, e Matematico primario del SER EN ISSIMO OCON PRI LO STUDIO DI PISA. Doue ne i congretti di quattro giornate fi difcorre forra i due MASSIMI SISTEMI DEL MONDO DOLEMALCO, E COPERNICANO; Propensul indeterminatemente is regioni Filofoche, e Naturali Stato per l'una, guanto per l'altro parte.

IN FIORENZA, Per Gio:Batifla Landini MDCXXXII.

CON LIGENZA DE SYPERJORI.

(1632)

Astro 120 Fall 2019: Lecture 8 page 13

1666: Isaac Newton (1643-1727)

mathematician: Invented calculus as a youth . . .

SYNTHESIZED:

Galileo's Experiments

Kepler's Laws

Calculus into Physical Laws; the basis of <u>Modern Science</u>

Apple falls -> Earth and apple attract each other Moon and Earth attract each other, too If moon moves sideways as it falls, it could forever circle the Earth...

Newton's Synthesis

Astro 120 Fall 2019: Lecture 8 page 15

- Mathematics Calculus
 - How to define/formulate/calculate motion & acceleration
- Physics definitions / laws
 - energy of interaction between masses
 - momentum resistance to change in motion
 - correspondence with mathematical definitions

<u>Universal Gravitation</u>

- dependence of gravitational force on mass & distance
- connecting Galileo's experiments & Kepler's Laws
- successful synthesis of earthly & cosmic behavior
- blueprint for modern physics

If moon moves sideways as it falls, it could forever circle the Earth...

Newton's Synthesis

Astro 120 Fall 2019: Lecture 8 page 16

- Force of Gravity pulls planets towards Sun
 - without gravity, planets would fly away in straight lines
- Newton's theory of gravity explains -simply- the orbits of the planets

Understanding motions of the planets was the principal discovery of astronomy from prehistory through 1700.

- Improved observations ("technology") demanded more precise models of the Solar System
- This precision was
 - <u>approached</u> by complex models (epicycles, etc.) but
 - <u>achieved</u> by discovery of the underlying simplicity: Gravity