Brief review of last time: The Moon's Orbit \& Eclipses

- Moon's Orbit and Eclipses
- eclipses possible only when New/Full moon is at a node
- Anatomy of a Shadow
- Circumstances of eclipses
- Lunar eclipse: Sun at one node, Moon at the other (at full moon)
- Solar eclipse: Sun at one node, Moon at the same (at new moon)

Today: Early Science - prehistory forward

- Motions of the Planets:
concluding the discovery of our solar system
- Early Science
- prehistoric discoveries: visual observations - motivations

Ancient Calendars and Calculators

- Chichen Itza, Yucatan (Mexico): Annual "Calendar"

The Early Days...

- Prehistoric Discoveries
- Motivation: Calendar = survival

Cosmology = order $=$ higher being

- Ecliptic + Zodiac
paths of planets and Sun
- Solstice
- Saros cycle seasons
eclipses

Ancient Calendars and Calculators

- Chichen Itza, Yucatan (Mexico): Annual "Calendar"

Towards a more complete Universe

- Early Science: The (500 BCE - 150 CE)
- spherical Earth (Pythagoras)
- relative distances of Sun, Moon, Earth (Aristarchus, 300BCE)
- size of the Earth (Eratosthenes)

Figure 3. Relative position of the Moon in the quarter phase (this figures is not to scale).
at precise moment of $1 \mathrm{st} / 3 \mathrm{rd}$ quarter: - measure angle a

- this will be less than 90 degrees
- $90-\mathbf{a}$ is angular size of Moon's orbit as viewed from the Sun
(Moon distance) / (Sun distance) $=\cos (\mathbf{a})$
Aristarchus measured 87 degrees; actual answer is 89.86 degrees.

Ancient Calendars and Calculators

- Ecliptic / Equinox / Eclipse marker: Stonehenge

Towards a more complete Universe

- Early Science: The (500 BCE - 150 CE)
- spherical Earth (Pythagoras)
- relative dimensions of Sun, Moon, Earth (Aristarchus, 300BCE)
- size of the Earth (Eratosthenes)

- with results from $1 \mathrm{st} / 3$ rd quarter:
- calculate size of Earth's shadow at moon's distance
- measure how many moons fit
- find relative size of Moon, Earth, Sun

Towards a more complete Universe

- Early Science: The (500 BCE - 150 CE)
- spherical Earth (Pythagoras)
- relative dimensions of Sun, Moon, Earth (Aristarchus, 300BCE)
- size of the Earth (Eratosthenes, 250 BCE)

- noon Sun shines straight down well in Syene (near Aswan)
- Angle at Alexandria $=7$ degrees
- Syene <-> Alexandria distance is $7 / 360$ of the circumference of the Earth
- $360 \times 800 \mathrm{~km} / 7=41,000 \mathrm{~km}$
- true circumference is $39,800 \mathrm{~km}$

Philosophy + some observation culminated in

- Ptolemy's computational scheme for celestial motion
- Earth -centered
- Uniform, circular Motion
- Epicycles

Mars Retrograde Loop - 2007-2008

Astro 120 Fall 2019: Lecture 6 page 12

towards the modern view

- 1200s: Ptolemy's method off by several degrees
- response: add more epicycles

1543: Copernicus

- moved sun to center -----> Revolutionary!

