Last time: Finding your way in the sky (and on Earth)

- The Celestial Sphere, link with terrestrial coordinates
- Horizon (local) System
- altitude (horizon to zenith) and azimuth (East from due North)
- Celestial (Equatorial) coordinate system fixed to the stars

Today's themes: Motions of the Sun \& the Seasons

- Finding the celestial pole and equator from anywhere
- Diurnal motions; the sidereal day and circumpolar regions
- The Motion of the Sun
- the solar day (4 minutes longer than the sidereal day)
- The Ecliptic
- inclination of the ecliptic $=23.5$ degrees to celestial equator
- The Seasons

A simplified picture - the meridian diagram

Finding the Celestial Pole and Equator in your sky At other (middle) latitude:

- tilted down from zenith by an angle equal to latitude
- West through meridian to East
- Celestial poles:
- due North (azimuth=0)
- altitude equal to the latitude of the observer
others circle the pole (circumpolar)
and others are never seen

The Motion(s) of the Sun

- follows westward motion of the sky, PLUS
- slower, eastward motion with respect to the stars
- caused by the motion of the Earth around the Sun

The Ecliptic

- apparent path of the Sun around the celestial sphere
- inclination: tilted 23.5 degrees to celestial equator
- Equinoxes: two crossing points (dec. $=0$ degrees)
- vernal equinox: RA=0 h (Sun position ~March 21)
- autumnal " : RA=12 h (Sun on ~September 21)

Solstices:
Extremes in solar declination
Summer Solstice (June 21)
R.A. $=6 \mathrm{~h}$
dec. $=+23.5(\mathrm{~N})$
Winter Solstice (Dec 21) R.A. $=18 \mathrm{~h}$
dec. $=-23.5(S)$

The Motion(s) of the Sun

- follows westward motion of the sky, PLUS
- slower, eastward motion with respect to the stars
- caused by the motion of the Earth around the Sun

Seasonal change in solar
declination: the analemma

The Seasons

The Sun at local noon: altitude via meridian diagram

The Sun at local noon: altitude via meridian diagram

The Seasons

The Sun at local noon: altitude via meridian diagram
far-northern latitude

Astro 120 Fall 2019: Lecture 3 page 19

Fiss day of summer

First day cl winter

The Angle of sunlight and the temperature of the Earth:
Constant flux of solar energy comes from the Sun

Summer (higher angle):

- energy concentrated on small area
- high energy per unit area

Winter (lower angle):

- energy spread over large area
- low energy per unit area

Astro 120 Fall 2019: Lecture 3 page 20
... in the Northern hemisphere ...
Arc of the Sun in summer spring/fall winter

- Sun rises in
- NE in summer
- due E in spring/fall
- SE in Winter
- Sun rises 3 hours earlier in the summer than winter

