Last time: Scales of the Universe

- The size of our solar system, galaxy, and Universe
- contents of our solar system
- Universe is mostly empty space (density = 10^{-23} g/cm³)
- we are mostly "star stuff" produced in stars and supernovae
 - space, H, He -> planets, people ... how?
- Strange and wonderful worlds on the way
- Time scales of the Universe (age ~ 13.6 billion years)

Today: Finding your way in the sky (and on Earth)

- The Celestial Sphere, link with terrestrial coordinates
- Horizon (local) System
 - altitude (horizon to zenith) and azimuth (East from due North)
- Celestial (Equatorial) coordinate system fixed to the stars
- Finding the celestial pole and equator from anywhere

Ways to measure the sky

Earth First: Positions on the globe

discovering our solar system:

- to all appearances, the Earth is the center of *everything*
- the sky is ever-changing, but in a predictable way (mostly)
- patterns in *space* were "easy" (ex. constellations)
- how did we identify patterns in *time* to enable *predictions*?
 - sunrise/sunset
 - seasons

Astro 120 Fall 2019: Lecture 2 page

Astro 120 Fall 2019: Lecture 2 page

- moon phases
- planetary orbits (around Earth)
- the Sun-centered solar system, and birth of modern science
- careful observations of celestial bodies were (and are) essential

Measuring across the sky: angular measure

a The angular size of the Moon is about

1/2° (which is also the angular size of the

c You can estimate angular sizes or distan-

ces with your outstretched hand.

b The angular distance between the two "pointer stars" of the Big Dipper (which point to the North Star, Polaris; see Figure 2.13a is about 5°

The Celestial Coordinate System

The equatorial coordinate system analog to longitude and latitude on Earth, affixed to the stars

• Declination (celestial latitude):

angle from

• celestial equator (0^O) (extension of the Earth's equator to the sky)

to

- North or South celestial pole (±90⁰) (extension of the Earth's axis to the sky)
- <u>Right Ascension (celestial longitude):</u>
 - angle East from vernal equinox (agreed zero point = place of the Sun on 21 March)
 - measured in hours, minutes (1 hour =15 degrees)
 - from 0 hours to 24 hours around the sky to the East

Finding the Celestial Pole and Equator in your sky

At the Earth's North Pole:

- Celestial equator:
 - always on the horizon

• Celestial poles:

- North CP always at the Zenith
- South CP always directly below your feet

No stars rise or set; move parallel to horizon

NCP (north celestial pole) 90° N Horizon equator 90° N Celestial equator

Celestial Coordinates

declination (dec) : just like latitude right ascension (R.A.) : measured East from vernal equinox

Finding the Celestial Pole and Equator in your sky

On the Earth's equator:

- Celestial equator:
 - always overhead
 - West through Zenith to East
- Celestial poles:
 - always on horizon
 - due North and due South

All stars rise and set as the Earth turns

Finding the Celestial Pole and Equator in your sky

On the Earth's equator:

- Celestial equator:
 - · always overhead
 - West through Zenith to East
- Celestial poles:
- always on horizon
- due North and due South

All stars rise and set as the Earth turns

Equatorial View

Finding the Celestial Pole and Equator in your sky

celestial equator

horizor

At other (middle) latitude:

- Celestial equator:
 - tilted down from zenith by an angle equal to latitude
 - West through meridian to East
- Celestial poles:
 - due North (azimuth=0)
 - altitude equal to the latiude of the observer Some stars rise and set, others circle the pole (circumpolar) and others are never seen

Astro 120 Fall 2019: Lecture 2 page 14

North CP

