Reading: Ch. 2. Sect. 2.1, Chapter 4, Sect. 4.1-4.3
Recitations: start a week from Friday (9/6)
Homework \#1 - available now, due in Lecture next Tuesday (9/3)

Last time: Scales of the Universe

- The size of our solar system, galaxy, and Universe
- contents of our solar system
- Universe is mostly empty space (density $=10^{-23} \mathrm{~g} / \mathrm{cm}^{3}$)
- we are mostly "star stuff" produced in stars and supernovae - space, H, He-> planets, people ... how?
- Strange and wonderful worlds on the way
- Time scales of the Universe (age ~ 13.6 billion years)

Today: Finding your way in the sky (and on Earth)

- The Celestial Sphere, link with terrestrial coordinates
- Horizon (local) System
- altitude (horizon to zenith) and azimuth (East from due North)
- Celestial (Equatorial) coordinate system fixed to the stars
- Finding the celestial pole and equator from anywhere

Ways to measure the sky

Earth First: Positions on the globe

- latitude
- angle from equator $\left(=0^{\circ}\right)$ to pole $\left(=90^{\circ}\right)$
- longitude
- angle West from Prime Meridian (agreed zero point)

Example: Ames, IA
latitude: $42^{0} 1^{\prime}$ (minute) North
longitude: $93^{\circ} 37^{\prime}$ West

discovering our solar system:

- to all appearances, the Earth is the center of everything
- the sky is ever-changing, but in a predictable way (mostly)
- patterns in space were "easy" (ex. constellations)
- how did we identify patterns in time to enable predictions?
- sunrise/sunset
- seasons
- moon phases
- planetary orbits (around Earth)
- the Sun-centered solar system, and birth of modern science
- careful observations of celestial bodies were (and are) essential

Measuring across the sky: angular measure

a The angular size of the Moon is about $1 / 2^{\circ}$ (which is also the angular size of the

b The angular distance between the two "pointer stars" of the Big Dipper (which
point to the North Star, Polaris; see Figure
 ces with your outstretched hand.

The Bowl of the Sky

The Horizon (Local) System

altitude:
angle from •horizon (0°)
to • zenith (90°) azimuth : angle East from

- due North (0^{O}) (agreed zero point)

Example 1: the North Star (Polaris)
altitude: 42° (in Ames) azimuth: 0^{0}

Example 2: the Sun altitude: 10° azimuth: 250°

The Bowl of the Sky

The Horizon (Local) System

> Example 1: the North Star
> (Polaris)
> altitude: 42° (in Ames) azimuth: 0°

Example 2: the Sun
altitude: 3^{0}
azimuth: 258°
But 30 minutes later...

The Horizon Coordinates

 30 minutes later.... The sun goes down altitude: 3^{0} azimuth: 258^{0}

Horizon system of locating things fails: at different times (Earth's rotation = diurnal motion) at different places (extremes: North pole, equator)

Celestial Globe

The Celestial Coordinate System

The equatorial coordinate system
analog to longitude and latitude on Earth, affixed to the stars

- Declination (celestial latitude):
angle from
- celestial equator $\left(0^{\circ}\right)$
(extension of the Earth's equator to the sky)
to
- North or South celestial pole $\left(\pm 90^{\circ}\right)$ (extension of the Earth's axis to the sky)

- Right Ascension (celestial longitude):

- angle East from vernal equinox (agreed zero point = place of the Sun on 21 March)
- measured in hours, minutes (1 hour $=15$ degrees)
- from 0 hours to 24 hours around the sky to the East

Finding the Celestial Pole and Equator in your sky

At the Earth's North Pole:

- Celestial equator:
- always on the horizon
- Celestial poles:

- North CP always at the Zenith
- South CP always directly below your feet

No stars rise or set; move parallel to horizon

Celestial Coordinates

declination (dec) : just like latitude
right ascension (R.A.) : measured East from vernal equinox

Finding the Celestial Pole and Equator in your sky
On the Earth's equator:

- Celestial equator:
- always overhead
- West through Zenith to East
- Celestial poles:
- always on horizon

- due North and due South

All stars rise and set as the Earth turns

Finding the Celestial Pole and Equator in your sky

On the Earth's equator:

- Celestial equator:
- always overhead
- West through Zenith to East
- Celestial poles:

- always on horizon
- due North and due South

All stars rise and set as the Earth turns

Mid-latitude view

Equatorial View

Finding the Celestial Pole and Equator in your sky At other (middle) latitude:

- tilted down from zenith by an angle equal to latitude
- West through meridian to East
- Celestial poles:
- due North (azimuth=0)
- altitude equal to the latiude of the observer

Some stars rise and set, others circle the pole (circumpolar)
and others are never seen

Celestial Coordinates

declination (dec) : just like latitude
right ascension (R.A.) : measured East from vernal equinox

Astro 120 Fall 2019: Lecture 2 page 19

Diurnal (Daily) Motions of the Sky

stars move in circles around the celestial poles

- one circle per sidereal day
- biggest circle on celestial equator $\left(\right.$ dec. $=0^{\circ}$)
- smaller circles nearer poles (higher declination)

Circumpolar regions
diurnal circle lies entirely above the horizon
declination $>90^{\circ}$ - latitude

Celestial Coordinates

declination (dec) : just like latitude
right ascension (R.A.) : measured East from vernal equinox
R.A. of vernal equinox $=0 \mathrm{~h} 0 \mathrm{~m} ; \quad \operatorname{dec}=0^{0}$

Example 1: Vega
dec $=+38^{\mathrm{O}} 44^{\prime}(+=\mathrm{N})$
R.A. $=18 \mathrm{~h} 32 \mathrm{~m} 30 \mathrm{~s}$

Example 2: The NCP
$\operatorname{dec}=90^{\circ}$
R.A. $=$??

Example 3: Sun (on March 21) Example 4: Sun (on Dec 21)

$$
\begin{array}{ll}
\operatorname{dec}=0^{\circ} 0^{\prime} & \operatorname{dec}=-23^{\circ} 37^{\prime}(-=S) \\
\text { R.A. }=0 \text { O } 0 m & \text { R.A. }=18 \mathrm{~h} 0 \mathrm{~m}
\end{array}
$$

