Previously: Quasars, Active Galaxies, and Monster Black Holes

- Discovery of quasars distant objects that are very bright (Hubble Law and redshift — receding very fast and very far away)
- "Active Galaxies" show evidence for high-energy phenomena in and around a small central engine that drives enormous structures
- Supermassive black holes as the engine for AGN phenomena

Today: Dark Matter and Large Scale Structure

- Galaxies are mostly found in groups and clusters
- Clusters are further organized into superclusters
- Dark matter is needed to hold clusters together
- The large-scale structure of the visible Universe shows large voids threaded by filamentary superclusters

The Cosmological Principle

But this is only part of the picture — if we look more closely, we see something different altogether

Large Scale Structure

- At smallest scales, there are groups
- Larger scales: galaxy clusters
- Even larger scales: galaxy superclusters

The Local Group

- 3 million light years across (~1 Mpc)
- ~60 members
- Three large spirals (MW, Andromeda, M33)
- Two intermediate ellipticals
- Many dwarf galaxies
- At least 50% mass in MW and Andromeda

Andromeda Galaxy

M33 (Triangulum Galaxy)

Magellanic Clouds (Dwarf Galaxies)

Local Group galaxies are moving toward/around each other

- But how can this be if the Universe is expanding?
- Locally, gravity is stronger than expansion

Local Group galaxies are moving toward/around each other

- But how can this be if the Universe is expanding?
- Locally, gravity is stronger than expansion

Hubble expansion

Local Group galaxies are moving toward/around each other

- But how can this be if the Universe is expanding?
- Locally, gravity is stronger than expansion

Hubble expansion

Gravity is the key to explaining large scale structure

Galaxy clusters

- Much larger than galactic groups
- 1000s 10,000s of galaxies!!!
- Typically 5-10 Mpc across (~300 MW's lined up!)
- Components:
 - cD (central dominant) "cannibal" galaxy
 - other ellipticals closer together "social ellipticals"
 - few spirals (these are further way) "shy spirals"
 - lots of interacting galaxies

"Social ellipticals"

Ellipticals near center are the result of mergers

Virgo cluster

- 50 million light years away
- 1000s of members
- M87 (which we've seen previously) is at the center

Coma cluster

- 300 million light years away
- Maybe as many as 30,000 galaxies!
- Total mass: 4 x 10¹⁵ M_{Sun}

Galaxy superclusters

- Even larger scales! (~100 Mpc or more)
- Largest structures known in the Universe
- Demonstrated by the "cosmic web"
 - Filaments of galaxies
 - Voids as large as 150 million light years (46 Mpcs)!
 - 90% of galaxies occupy < 10% of volume of space

Galaxy superclusters

But the mass that we "see" is not enough to account for this gravitational collapse!!!

Dark Matter!

Dark Matter I (brief review)

In spiral galaxies, matter extends well beyond visible disks

90% of all mass in galaxies is **DARK**

Dark Matter I (brief review)

90% of all mass in galaxies is **DARK**

Dark Matter Halos

Dark Matter Halos

Dark Matter Halos

- Evidence line #1:
 Galaxy velocities within clusters
 - typical radial velocities ~ 1000 km/s in a big cluster
 - escape velocity (counting galaxies alone) ~ 300 km/s

Evidence line #2:
 Hot gas between cluster members

Evidence line #3:

Gravitational lensing

- Evidence line #1:
 Galaxy velocities within clusters
 - typical radial velocities ~ 1000 km/s in a big cluster
 - escape velocity (counting galaxies alone) ~ 300 km/s

- Evidence line #1:
 - Galaxy velocities within clusters
 - typical radial velocities ~ 1000 km/s in a big cluster
 - escape velocity (counting galaxies alone) ~ 300 km/s

- Evidence line #1:
 Galaxy velocities within clusters
 - typical radial velocities ~ 1000 km/s in a big cluster
 - escape velocity (counting galaxies alone) ~ 300 km/s

- Evidence line #1:
 - Galaxy velocities within clusters
 - typical radial velocities ~ 1000 km/s in a big cluster
 - escape velocity (counting galaxies alone) ~ 300 km/s

- Evidence line #1:
 - Galaxy velocities within clusters
 - typical radial velocities ~ 1000 km/s in a big cluster
 - escape velocity (counting galaxies alone) ~ 300 km/s

- Evidence line #1:
 - Galaxy velocities within clusters
 - typical radial velocities ~ 1000 km/s in a big cluster
 - escape velocity (counting galaxies alone) ~ 300 km/s

Evidence line #2: Hot gas in galaxy clusters

- 10⁸ K, concentrated at center-of-mass
- Cluster must contain a lot of mass to confine this hot gas - requires more mass than in galaxies alone
- Thermal velocity ~ 1200 km/s must be < v_{esc}

Evidence line #3: Gravitational lensing

Gravitational Lensing

Gravitational Lensing

The Bullet Cluster

How much mass is there in dark matter?

Mass-To-Light Ratios

Type of Object	Mass-to-Light Ratio
Sun	1
Matter in vicinity of Sun	2
Mass in Milky Way within 80,000 light-years of the center	10
Small groups of galaxies	50–150
Rich clusters of galaxies	250–300

If M/L > 100, then dark matter is present

The Big Picture

- 1. Universe started off mostly smooth, with some regions denser than others
- 2. Regions of higher density (both luminous and dark matter) begin to collapse
- 3. Collapse proceeds along filaments
- 4. Smaller objects form first (e.g., dwarf galaxies, globular clusters)
- 5. Smaller objects merge together to form bigger objects
- 6. Groups form
- 7. Clusters form
- 8. Superclusters form

Before we wrap up, there is one important question to address

What is dark matter?!

Short answer: we don't know

- 1. MACHOs (Massive Compact Halo Objects); e.g., black holes without an accretion disk
- 2. WIMPs (Weakly Interacting Massive Particles)
 - (a) Hot dark matter (hot means fast moving)
 - (b) Cold dark matter (cold as in slow moving)

Not enough mass in MACHOs

Hot WIMPs would smear out structures -> fewer small galaxies

Cold WIMPs seem to fit best with the observations