Reading: Chapter 17; Chapter 19, section 19.2

Chapter 5, section 5.6; Chapter 17, section 17.4

Exam 1: Grades available on Canvas

Last time: How does the Sun shine?

- We understand the inner workings of the Sun through our knowledge of physics.
- The Sun's interior produces huge amounts of energy that spreads from the center through to the surface in a variety of ways.
- The source of energy for the Sun is nuclear fusion.

Today: Too small to see, too bright to ignore

- The surfaces of the stars are too small to fully resolve
- Stellar spectra display a range of features that depend on temperature and composition;
 B A F G K M
- We measure the distances to the stars through stellar parallax

STARS!

"too small to see, too bright to ignore"

Astro 150 Fall 2020: Lecture 10 page 2

STARS!

"too small to see, too bright to ignore" without heroic effort (interferometry)

radio interferometry now "routine"

radio interferometry now "routine"

Astro 150 Fall 2020: Lecture 10 page 6

Bobcat Fire threatening Mt. Wilson

Tuesday afternoon

Altair - a rapidly rotating star imaged via interferometry

Astro 150 Fall 2020: Lecture 10 page 10

other interferometer images of stars

Stellar Spectra

- 1872: Henry Draper: photographic survey of stellar spectra
- 1920s: Annie Jump Cannon (& crew):catalog of ~225,000 spectra

Spectral "Types": based on spectral lines

OBAFGKM

The Spectral Sequence

Astro 150 Fall 2020: Lecture 10 page 14

Spectral Type	Temperature	Dominant Lines
0	> 30,000	ionized He, some H
В	18,000	neutral He, H
А	10,000	very strong H
F	7,000	modest H, some metals
G	5,500	weak H, strong ionized
K	4,000	neutral metals
М	3,000	metals, molecular bands

Oh, Be A Fine Girl, Kiss Me

-or-

Order Burgers And Fries; Get Ketchup, Mel

-or-

Oh! Blow Another Field Goal, Kicker Man

Spectral Sequence = Temperature Sequence 1925: Cecelia Payne (Gaposchkin)

- Hydrogen Balmer lines: need electron in level 2:
 - high T: most electrons in level 3 (O stars)
 - low T: most electrons in level 1 (K stars)
- Best T for hydrogen Balmer Lines:
 - 10,000K --> A stars!
 - similar effects on other elements
- identification of lines: --> element present
- strength of lines
 - relative level populations
 - temperature and abundance

10,000 perature (K)

Astro 150 Fall 2020: Lecture 10 page 16

"undoubtedly the most brilliant Ph.D. thesis ever written in astronomy"

- Cecilia Payne(-Gaposchkin) PhD, Radcliffe, 1925
- Explained the spectral sequence
- Overturned centuries-long assumption that stars are made of the same material as the Earth
- Showed that the composition of the stars (and therefore the Universe) is predominantly Hydrogen and Helium

Astro 150 Fall 2020: Lecture 10 page 18

STARS!

"too small to see, too bright to ignore"

- We observe:
 - apparent brightness
 - color
 - spectrum
 - position in sky
- Apparent brightness depends on
 - luminosity ... and...
 - distance

Is a star bright because it is close ... or because it is luminous?

What do we want to know about stars?

Temperature - spectroscopy Composition - spectroscopy
 Luminosity - brightness + c

- brightness + distance

 Radius - brightness+temp.+distance

Mass - binaries + distance

 Position - distance

Velocity - distance

Environment

 Rotation - spectroscopy

 Magnetic field - spectroscopy

DISTANCE is a pivotal quantity